2. Scaling the heights of the atmosphere

or the problem of getting up and staying up

G. Leng, ME dept, NUS
References

Understanding the Earth’s atmosphere

- Ionosphere (Aurora)
- Mesosphere
- Ozone Layer
- Stratosphere
- Tropopause
- Troposphere
- Earth
Question: Are the boundaries for the atmospheric regions the same everywhere on the Earth?

No. The Earth is not a perfect sphere.

The World Geodetic System (WGS) models the Earth as an oblate spheroid

\[
\begin{align*}
\text{equatorial axis} & \quad = \quad 6,378,137.000 \text{ m} \\
\text{polar axis} & \quad = \quad 6,356,752.314 \text{ m} \\
\text{polar tropopause} & \quad = \quad 6 \text{ km} \\
\text{equatorial tropopause} & \quad = \quad 17 \text{ km}
\end{align*}
\]
Question: Is the Earth’s atmosphere uniform?

<table>
<thead>
<tr>
<th></th>
<th>0 km</th>
<th>20 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pressure (N/m²)</td>
<td>101 325</td>
<td></td>
</tr>
<tr>
<td>Air density (kg/m³)</td>
<td>1.225</td>
<td></td>
</tr>
<tr>
<td>Air temperature (°C)</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Question: Any implications for flight vehicles?
Question: So how are the boundaries defined? By pressure, density or temperature?

Air temperature falls at a constant rate in the troposphere.

From the tropopause, the temperature remains constant at -60 °C until ≈20 km above S.L.

The lower stratosphere is the limit for atmospheric flight.
How high can artillery go?
What can we see at high altitudes?
More conventional example

- RQ-4 Global Hawk High Altitude, Long Endurance (HALE) UAV
- Mission: Fly 1,200 miles and remain on site for 24 hrs at 18km altitude
- Sensor suite: Electro-optical, IR, synthetic aperture radar, ground moving target indicator.
- Capability: scan 40,000 nautical square miles (63,000 km²) in 24 hrs
Why fly at high altitudes?

• Jet stream: fast moving current of air at altitudes of levels of 10-15 km caused by temperature differences.

• Typically $O(10^3)$ km long, $O(10^2)$ km wide, and a few km thick.

• Wind speeds from 55 km/h to 120 km/h causing air turbulence.
Aerodynamic forces on a flight vehicle scale as:

\[\text{Aerodynamic force} \propto \rho V^2 \]

Note the dependence on \(V^2 \)
For missiles, there are two important aerodynamic forces

\[
\text{Axial force } A = \frac{1}{2} \rho V^2 S C_A \\
\text{Normal force } N = \frac{1}{2} \rho V^2 S C_N
\]

These forces are aligned with the missile body and not the velocity

G. Leng, ME dept, NUS
The symbols are:

\[S \] : reference area (m\(^2\)) e.g. missile cross section area

\[C_A \] : axial force coefficient (non dimensional)

\[C_N \] : normal force coefficient (non dimensional)

\[\frac{1}{2} \rho V^2 \] : dynamic pressure (N/m\(^2\))
Equivalently we can represent the aerodynamics forces as lift and drag forces aligned with the velocity

<table>
<thead>
<tr>
<th>Force</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift force L</td>
<td>$L = \frac{1}{2} \rho V^2 S C_L$</td>
</tr>
<tr>
<td>Drag force D</td>
<td>$D = \frac{1}{2} \rho V^2 S C_D$</td>
</tr>
</tbody>
</table>

G. Leng, ME dept, NUS
Ex: Estimate C_L for the AGM 65

Flight conditions

mass : 300 kg
speed : 320 m/s
altitude: sea level
diameter: 0.3048 m
For level flight,

\[S = C_L \]
Ex: Speed/altitude variation for vertical launch AMM
Question: Estimate the terminal velocity to engage a target at sea level
At 10 km,

At S.L 0 km,
Aerodynamic flow parameters

Missile/projectile airspeeds can range from $10^0 – 10^3$ m/s

For this range of speeds, airflow characteristics are determined by 2 important parameters:

1. Reynolds number Re

2. Mach number M
Reynolds number

1. Air is “sticky” or viscous
2. From the missile’s viewpoint, the air at the surface is stationary

$V = \text{missile airspeed}$

G. Leng, ME dept, NUS
3. The thin region where the air flow builds up its speed is called the boundary layer.

4. The Reynolds number is a measure of the importance of this viscous effect.

\[Re = \frac{(\rho V^2)}{(\mu V / L)} = \frac{VL}{\nu} \]

- \(\rho \): mass density
- \(V \): velocity
- \(L \): reference length
- \(\mu \): coefficient of viscosity
- \(\nu = \mu/\rho \): kinematic viscosity
Ex: What are typical missile Reynolds numbers?

Using the AGM-65 at S.L.

\[V : 320 \text{ m/s} \quad L : 0.3048 \text{ m (diameter)} \]
\[\nu : 1.4607 \times 10^{-5} \text{ m}^2/\text{s} \quad \text{(kinematic viscosity for air at S.L.)} \]

\[Re = \frac{V \cdot L}{\nu} \]
The Mach number

1. Air is compressible.

2. A moving missile disturbs the surrounding air.

3. These disturbances e.g. pressure variations, take a finite time to propagate at the speed of sound through the surrounding air.

4. The Mach number measures the importance of this compressibility effect.

\[
M = \frac{\text{airspeed}}{\text{(speed of sound)}} = \frac{V}{a}
\]

G. Leng, ME dept, NUS
Example: Disturbance propagation $M < 1$

Consider the distances travelled by the disturbance and the missile in 1s

G. Leng, ME dept, NUS
Example: Disturbance propagation $M > 1$

Consider the distances travelled by the disturbance and the missile in 1s.
So for $M > 1$, there is a discontinuity in the flow field “seen” by the missile.

Air properties like pressure, temperature and density changes sharply across the discontinuity or *shock*.

Schlieren photo of shock waves

Light is refracted differently because of changes in air density.

G. Leng, ME dept, NUS
The shape of the shock wave depends on the shape of the object. Shocks created by high speed flight can be annoying
Effects of a shock (sonic boom)

On the ground

On humans

G. Leng, ME dept, NUS
Condensation due to sudden changes in air temperature and pressure
Classification of flow regimes via speed

- $M < 0.8$ subsonic incompressible aerodynamics
- $0.8 < M < 1.2$ transonic localized compressibility effects
- $1.2 < M < 5$ supersonic compressible aerodynamics
- $M > 5$ hypersonic aerodynamic heating